Electrochemical characterization of parylene-embedded carbon nanotube nanoelectrode arrays.

نویسندگان

  • Scott Miserendino
  • Juhwan Yoo
  • Alan Cassell
  • Yu-Chong Tai
چکیده

A novel parylene-embedded carbon nanotube nanoelectrode array is presented for use as an electrochemical detector working electrode material. The fabrication process is compatible with standard microfluidic and other MEMS processing without requiring chemical mechanical polishing. Electrochemical studies of the nanoelectrodes showed that they perform comparably to platinum. Electrochemical pretreatment for short periods of time was found to further improve performance as measured by cathodic and anodic peak separation of K(3)Fe(CN)(6). A lower detection limit below 0.1 µM was measured and with further fabrication improvements detection limits between 100 pM and 10 nM are possible. This makes the nanoelectrode arrays particularly suitable for trace electrochemical analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Multi-Walled Carbon Nanotubes as Electrochemical Electrodes

Individual multi-walled carbon nanotubes were investigated for their usefulness as nanoscale electrochemical electrodes. The nanotubes were mounted on metal-coated atomic force microscopy tips, and the assembly was insulated with Parylene polymer. Approximately 200nm of the nanotube tip was exposed by use of a laser so the entire probe could be immersed in an electrolytic solution with only the...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

Biochemical Sensors Using Carbon Nanotube Arrays

Magnified carbon nanotube nanoelectrode array. The reduction of cost and time is the major concern in clinical diagnostics based on molecular analysis. Low-cost microchips are particularly desired for health monitoring and biomarker detection in NASA’s space exploration, due to the fact that it is not possible to take the supporting facilities used in today’s clinical lab into outer space missi...

متن کامل

Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber

Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube  in  a  polymer  matrix  and  its surrounding  interphase  is  replaced with an equivalent fiber for  predicting  the  mechanical  properties of  the  carbon  nanotube/polymer composite. The effects of an interphase layer between the nan...

متن کامل

Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation, and Application in Voltammetric Analysis

Fabrication, electrochemical characterization, and applications of low-site density carbon nanotubes based nanoelectrode arrays (CNTs-NEAs) are reported in this work. Spin-coating of an epoxy resin provides a new way to create the electrode passivation layer effectively reducing electrode capacitance and current leakage. Cyclic voltammetry showed the sigmoidal shape curves with low capacitive c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2006